Udabur Investment:C# onnx Detic detects 20,000 types of objects
github address:
Code Release for "Detecting Twenty-Thousand Classes USIGE-Level Supervision".
Features
Detects Any Class Given Class Names (USING CLIP).
We Train the Detector on ImageNet-21k DataSet with 21k Classes.
Cross-Dataset Generalization to Openimages and Objects365 Without Finetuning.
State-the-The-Vocabular Lvis and Open-Vocabular Coco.Udabur Investment
Works for Detr-Style Detectors.
Inputs
---------------------------
name: IMG
tensor: Float [1, 3, -1, -1]
----------------------------------------------------------------
Outputs
---------------------------
name: Pred_boxes
tensor: Float [-1, 4]
name: scores
tensor: float [-1]
name: Pred_Classes
tensor: int64 [-1]
name: Pred_masks
tensor: Float [-1, 1, -1, -1]
----------------------------------------------------------------
Vs2022
.NET Framework 4.8
Opencvsharp 4.8
Microsoft.ml.onnxruntime 1.16.2
var pred_boxes = results_onnxvalue [0] .stensor (). Toarray ();
var scores = results_onnxValue [1] .stensor (). Toarray ();
var pred_classes = results_onnxvalue [2] .stensor ()Jaipur Wealth Management. Toarray ();
varter_masks = results_onnxValue [3] .stensor (). Toarray ();
int Num_box = results_onnxValue [0] .astensor (). Dimensions [0];
float scale_x = factors [0];
float scale_y = factors [1];
List preds = new list ();
For (int i = 0; I threshold && health> Threshold)
Preds.add (New Boxinfo (XMIN, Ymin, XMAX, YMAX, Score, Class_name));
Published on:2024-10-25,Unless otherwise specified,
all articles are original.